
Journal of Sound and <ibration (2001) 239(2), 297}320
doi:10.1006/jsvi.2000.3169, available online at http://www.idealibrary.com on
DYNAMIC STIFFNESS FORMULATION, FREE VIBRATION
AND WAVE MOTION OF HELICAL SPRINGS

J. LEEs

Graduate School of Automotive Engineering, Kookmin ;niversity, 861-1, Chongnung-dong,
Songbuk-gu, Seoul, 136-702, Korea

AND

D. J. THOMPSON

Institute of Sound and <ibration Research, ;niversity of Southampton, High,eld,
Southampton SO17 1BJ, England. E-mail: djt@isvr.soton.ac.uk

(Received 25 November 1999, and in ,nal form 2 June 2000)

A coil spring can only be treated as a simple massless force element at low frequencies, the
e!ects of internal resonances leading to signi"cant dynamic sti!ening. For an automotive
suspension spring this occurs at frequencies as low as about 40 Hz. This paper presents an
e$cient method for calculating the dynamic sti!ness of a helical coil spring. The partial
di!erential equations of motion are used to derive the relation between wavenumber and
frequency along with the associated wave shapes. By expressing the response in terms of
these waves, the dynamic sti!ness matrix is assembled. Natural frequencies are obtained
from the reduced sti!ness matrix, allowing for di!erent boundary conditions, making use of
the Wittrick}Williams algorithm. The results of the dynamic sti!ness method are compared
with those of the transfer matrix method and the "nite element method. The nature of the
wave propagation is also investigated. Although at low frequencies four wave types
propagate, above a particular frequency only two propagating waves remain. These are
composite waves which are excited by both axial and transverse motion. For lower values of
helix angle an intermediate frequency range exists where six propagating waves can occur.

( 2001 Academic Press
1. INTRODUCTION

The helical spring is a very common and important element in many machines and vehicles.
In dynamic analyses, such springs as well as dampers are often treated as simple massless
force elements. However, as the frequency range of interest increases, such an approach is
not suitable for the prediction of the dynamic behaviour of the system. In particular, above
a certain frequency, internal resonances of the spring have to be taken into account. For
a coil spring with dimensions that are typical for application in an automotive suspension,
for example, the dynamic sti!ness is found to increase sharply at frequencies as low as about
40 Hz due to such internal resonances. This paper gives an e$cient method for calculating
the dynamic sti!ness of a helical spring.

Already a 100 years ago, Love [1] gave the equations of motion for a coil spring.
However, these 12th order di!erential equations could not be solved analytically. In the
1930s, Timoshenko [2] derived the rigidity of the compression, lateral and shear de#ections
sWork carried out while a visiting research fellow at ISVR, Southampton.
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for a coil spring in order to explain the bounds of stability of a compressed helical spring
due to lateral buckling.

Wittrick's [3] paper of 1966 is a classic treatise on the behaviour of helical springs. Prior
to this, as given by Wahl [4], in analyses of the propagation of extensional waves along the
axis of a helical spring, it was assumed that the coupling between extension of the spring and
rotation about its axis could be ignored. Wittrick treated the helical spring as a Timoshenko
beam including shear deformation and rotational inertia and obtained a set of 12 linear
coupled partial di!erential equations. These were the most complete equations at the time,
and apart from minor corrections, have been used by a number of authors since. He
obtained approximate solutions in several ways but did not obtain an exact solution.

Jiang et al. [5, 6] obtained non-linear equations of motion and from them linearized
equations for the vibration of a spring. They studied the coupling between axial and
torsional motion in more detail than Wittrick, deriving the complex form of the oscillations
of the spring in the time domain due to the interaction and superposition of the component
waves.

Sinha and Costello [7] used a "nite di!erence technique and the method of non-linear
characteristics to solve numerically the non-linear partial di!erential equations in the time
domain. This study too is limited to axial and torsional motion of the spring.

Banerjee and Williams [8] gave an exact dynamic sti!ness matrix for the coupled
extension and torsion of a member of which a helical spring is a good example. In reference
[9] it is shown that the natural frequencies of such a system for di!erent boundary
conditions are related. In particular, the non-zero extensional/torsional natural frequencies
for the free}free case are identical to those for the clamped}clamped case. It will be seen in
this paper that if coupling with lateral motion is signi"cant, this equality is only
approximate.

It is not a simple matter to extend the above analyses to include out-of-plane motion of
the spring. The axial and torsional motions can be likened to those of a simple rod, but
coupling between the di!erent equations of motion makes such an analogy less useful for
the out-of-plane motion. However, with the aid of digital computers it is possible to solve
the di!erential equations as given by Love or Wittrick.

Mottershead [10] developed special "nite elements for solving the di!erential equations.
He obtained element displacement functions by integrating the di!erential equations. The
elements so obtained may be one or more turns of the spring in length or a fraction of a turn.
For static problems his elements provide exact solutions whilst for dynamics the natural
frequencies are una!ected by mesh density provided that su$cient master degrees of
freedom are speci"ed. Mottershead also performed experiments on two small clamped}
clamped springs, the results of which have been used by other researchers to test their
theories. As well as predominantly extensional and torsional modes, &&snaking'' modes that
also involve transverse motion were found that can explain the side wear of coils under axial
loading. Such modes cannot be detected by using simple theories.

Another approach is the transfer matrix method, employed by Pearson [11]. He extended
the partial di!erential equations of motion for a helical spring to include the e!ects of
a static axial preload. The transfer matrix was obtained from the di!erential equations by
a series expansion. This series does not converge if the spring is too long, so usually the
spring is sub-divided into 2m equal segments. The natural frequencies were found as the
zeroes of the determinant of a 6]6 frequency-dependent matrix. An iterative method was
used for this. Pearson shows the dependence of the natural frequencies on axial load, helix
angle, number of turns, etc.

Yildirim [12] also used the transfer matrix approach, making use of the
Cayley}Hamilton theorem to develop an algorithm which allows the transfer matrix to be
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determined with improved precision. This is especially important for long springs. In
reference [13] Yildirim concentrated on determining the natural frequencies for arbitrarily
shaped springs. In reference [14] an e$cient method for determining the natural frequencies
is developed.

In reference [15], Pearson and Wittrick used the dynamic sti!ness method to "nd an
exact solution for the natural frequencies of a coil spring based on Bernoulli}Euler beam
theory and an adaptation of the Wittrick}Williams algorithm [16]. Although e$cient and
analytically exact, this work does not include shear deformation in the wire, important at
high frequencies.

In this paper the governing partial di!erential equations of motion of a helical spring are
"rst obtained, based on Timoshenko beam theory and Frenet's formulation for curved
systems, as in references [10}12]. The theory is applied to helical springs wound using wire
with a circular cross-section. From these equations the dispersion relation, linking
wavenumber and frequency for each wave, is derived and the nature of the various waves is
studied. The variation in the dispersion relation with helix angle is investigated. By
a summation of waves, a frequency-dependent dynamic sti!ness matrix, K, is determined
that links the six degrees of freedom at each end of the spring to the six forces/moments at
each end. After applying suitable constraints, the frequencies at which the determinant of
K vanishes give the natural frequencies of the spring. In fact, the Wittrick}Williams method
[16] is used to determine the natural frequencies more e$ciently. Moreover, the dynamic
sti!ness matrix can be used directly as an &&exact'' element in a model of a more complicated
structure, for example a vehicle. The method allows an e$cient calculation to be made
which accounts for the complex modal behaviour of springs at high frequency. The method
is applied to a typical spring from a car suspension in section 3.

2. THEORETICAL BACKGROUND AND FORMULATION

2.1. EQUATIONS OF THE HELIX

For clarity, the equations of a helix are introduced "rst and used to derive the equations
of motion of a helical spring. Figure 1 shows a helical coil spring, the axis of which lies along
the x-axis. The helix radius is R and the helix angle is a. The variable s is used to measure the
distance along the wire and is related to the angle / by

/"s cos a/R. (1)

The global (x, y, z) co-ordinates are related to / by

x"R/ tan a, y"R cos/, z"R sin / . (2)

At any point on the helix, local co-ordinates are de"ned as shown in Figure 2, with u( radial,
w( tangential and v( binormal to the other directions. The displacements (u, v, w) in these local
co-ordinates are related to those in global co-ordinates (u
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Similar equations apply for rotations, forces and moments.



Figure 1. Schematic view of a helical spring.

Figure 2. Co-ordinate system of a helical spring.
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Frenet formulation [17] allows all the displacements and resultant forces to be given as
functions of s. The curvature i and tortuosity q of the helix are de"ned by

i"
cos 2 a

R
, q"

sin a cos a
R

. (4)
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The relations between these parameters and the three unit vectors [14] can be written in
matrix form as
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2.2. EQUILIBRIUM EQUATIONS

Consider the situation in which the spring is subjected to an arbitrary dynamic load F1 , as
shown in Figure 1. Then at any cross-section the wire is subjected to three components
of force P

u
, P

v
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w
and three moments M
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about the u( , v( and w( directions

(see Figure 2). These forces and moments result in the linear and rotational displacements of
the wire and cause the coupling e!ects of motion of the spring. It will be assumed that the
cross-section of the wire has two axes of symmetry which coincide with the directions u( and
v( . Suppose that the components of the linear displacements d, rotations h, concentrated
forces P and moments M at position s are de"ned by
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Di!erentiating equation (6) by the length measured along the helix s yields
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Timoshenko beam theory [2] gives the relationship between displacements and forces
as
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where E is the Young's modulus, G the shear modulus, A the cross-sectional area of the wire,
c is the shear area correction, I

u
and I

v
are the second moments of area of the section about

the directions u( and v( and J is the St. Venant torsion constant. In this paper, the theory is
applied to a spring composed of a circular wire. In this case I

u
"I

v
and J"I

w
the polar

moment of area about the direction w( . More advanced beam theories include the e!ects of
initial twist and curvature (see, e.g., reference [18]). For circular sections, the e!ect of initial
twist is eliminated. The remaining initial curvature e!ects introduce extension-bending,
extension-shear, bending-shear and twist-shear coupling terms, that are proportional to i,
as well as introduce quadratic correction terms to the sti!ness. However, these e!ects are
neglected here for simplicity, as in previous work [3, 10}12], since not all such coupling
terms are available in analytical form.

By substituting equations (5) and (8) into equation (7) and rearranging, the governing
partial di!erential equations for the static equilibrium are obtained as follows:
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Upon rearranging by components of displacements and forces, this can be written as
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and
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In the D'Alembert view of dynamic equilibrium of equation (10), inertia forces are
considered to act in opposition to elastic forces. Introducing the inertia forces into equation
(10) yields the governing partial di!erential equations for the dynamic equilibrium as
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where
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Equation (13) describes the dynamic behaviour of a helical spring and is essentially the same
as Wittrick's governing di!erential equations [3].

2.3. DISPERSION RELATIONSHIP

These equations are now solved to "nd free wave solutions. A wave in the spring is
composed of temporal and spatial variation. The temporal variation is characterized by the
angular frequency u and the spatial variation is characterized by the wavenumber k, where
k is taken as real for an exponentially decaying wave and imaginary for a propagating wave.

In a free wave, the translational and rotational motions and the stress for an element of
the wire all have the same spatial dependence, so if the responses of an element of the wire
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are harmonic in time, we write the displacements and forces for a particular free wave as
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Substituting equation (15) into equation (13) gives a set of 12 homogeneous linear
simultaneous equations,
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where S
21
"!u2T

21
. In order that equation (16) should have a non-zero solution, it is

necessary for the determinant of the matrix (k[I]!S) to vanish. This is an ordinary
eigenvalue problem of dimension 12. It follows that there are 12 wavenumbers, six relating
to the forward direction and six to backward direction velocities of wave propagation. If the
frequency is given, the free wavenumbers can be found from the eigensolutions of the system
matrix of equation (16). The eigenvectors MDHPKNT represent the deformation and stresses
associated with free wave propagation at wavenumber k and frequency u.

2.4. DYNAMIC STIFFNESS MATRIX

In this section, the above free wave solutions are used to derive the dynamic sti!ness
matrices [19] for the helical spring. The relations between loads and displacements at
position s are obtained from the "rst six rows of equation (13):
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Next one can write the solution as a sum of 12 waves,
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where k
i

are the eigenvalues and [U] is the 6]12 eigenvector matrix associated with
equation (16) and a

i
are the complex amplitudes of the 12 waves. Di!erentiating equation

(18) with respect to s yields
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Substituting equation (18) and (19) into equation (17) yields the forces and moments as

G
P

MH"![S
12

]~1[S
11

] [U]

}

ekis

}

Ma
i
N#[S

12
]~1[U]

}

k
i
ekis

}

Ma
i
N .

(20)

Now one can form the 12]1 vector U of displacements at s"0 and ¸ from equation (18):
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and the 12]1 vector F of forces and moments at s"0 and ¸ from equation (20),
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Here D
1

and D
2

are 12]12 matrices. Eliminating a from these equations yields the
dynamic sti!ness matrix K as

F"KU"(D
2
D~1

1
)U . (23)

The matrices D
1
and D

2
contain very large terms associated with wavenumbers with a large

positive real part. To avoid numerical problems in inverting D
1
, the columns of the

eigenvector matrix [U] should be scaled by the factor e~kiL for all waves where Re(k
i
)'0.

This is possible since eigenvectors have arbitrary scaling.
To use the dynamic sti!ness matrix it is necessary to convert from local co-ordinates

(u, v, w) to global co-ordinates (x, y, z), apply boundary conditions and solve. One can write
a 12]12 matrix

T"

Q (0) 0 0 0

0 Q (0) 0 0
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where Q(/) is the 3]3 rotation matrix given by equation (3). Then if F1 is the force vector at
the two ends in (x, y, z) co-ordinates and U1 is the corresponding displacement vector

F1 "TF, U1 "TU (25)

and

F1 "TF"TD
2
D~1

1
U"TD

2
D~1

1
T~1U1 , (26)

i.e., in global co-ordinates the dynamic sti!ness matrix is

K1 "TD
2
D~1

1
T~1 . (27)

2.5. SOLUTION FOR DIFFERENT BOUNDARY CONDITIONS

To "nd the response of the spring under particular boundary conditions, the matrix K1 is
partitioned and solved by using standard "nite element techniques. In order to determine
the resonances of the spring, minima are sought in the function

b"det DK@ D , (28)

where, for free}free boundary conditions, the full matrix K1 is used. However, for other
boundary conditions this has "rst to be reduced (indicated by K@) by eliminating rows and
columns corresponding to clamped degrees of freedom.

It is possible that natural frequencies will be missed by such an approach, particularly if
they occur in close pairs. This can be overcome by making use of the Wittrick}Williams
algorithm [16], as follows. Denote by J (u) the number of natural frequencies of the system
below a frequency u. Consider also the same system but with all the degrees of freedom
represented in K@ clamped. The number of natural frequencies of this clamped system below
u is denoted by J

0
(u). Then if sMK@(u)N is the number of negative eigenvalues of the reduced

dynamic sti!ness matrix K@(u),

J (u)"J
0
(u)#sMK@(u)N. (29)

The method therefore relies on evaluating sMK@(u)N as a function of frequency. This can be
found by evaluating the eigenvalues of K@(u) or simply by a Gaussian elimination procedure
[16]. From equation (29), it can be seen that sMK@(u)N increases by one at each natural
frequency of the system and reduces by one at each natural frequency of the fully clamped
system. If both the clamped and unclamped systems have natural frequencies that are close
to one another, this pair could be missed. Therefore, one "rst requires a knowledge of the
latter frequencies.

One way around this is to determine sMK@(u)N versus frequency for several di!erent
boundary conditions. Each result should yield the same set of natural frequencies of the
clamped system, so these results can be combined into a single set. The more such results are
obtained, the less likely it is that one of the modes will be missed. An alternative approach
was used by Pearson and Wittrick [15], in which one particular set of boundary conditions
was used, for which the natural frequencies could easily be determined in their case, and
hence the clamped natural frequencies could be derived from equation (29) above.
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After an initial broad search, each natural frequency of the unclamped system can be
found by re"ning the search to any required precision. In this way the natural frequencies of
the fully clamped system are also obtained without the need to resort to internal node
points.

To "nd the modeshape corresponding to a particular natural frequency u
n
, it may be

noted that K@(u
n
) has a zero eigenvalue at this frequency. Thus,

[K@ (u
n
)] U1 "0. (30)

The associated eigenvector contains the modeshape at the limited set of degrees of
freedom contained in K@. Applying displacements corresponding to this eigenvector allows
"rst the wave amplitudes Ma

i
N to be evaluated from equation (21) and thence also the

modeshape at arbitrary positions to be found from equation (18).

2.6. INCLUSION OF STATIC PRELOAD

By using the equations of Pearson [11] it is possible to include the e!ects of a static axial
preload P

0
into the above analysis. It is assumed that, in applying the preload, the spring

radius R remains constant but the number of turns n increases slightly. This leads to
a modi"ed matrix S by the inclusion of additional terms, as follows:
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Here S
11

and T
21

are as de"ned in equations (11) and (14) respectively. The helix angle a is
also modi"ed by the presence of the static preload.

3. RESULTS AND DISCUSSION

3.1. NATURAL FREQUENCIES AND FORCED RESPONSES

In this section numerical results are given for a spring with a wire radius of 6 mm, a coil
radius of 65 mm and a height of 320 mm. The spring has six turns giving a helix angle of
7)443. This is an approximation to an actual spring which forms a part of the front
suspension of a mid-sized passenger car, the actual spring having a greater helix angle for
the central four turns and a reduced helix angle near the ends. This variation in helix angle is
not included in any of the models considered here.

A "nite element model of the spring has been assembled by using NASTRAN, composed
of 432 two-noded Euler}Bernoulli beams each covering 53 of arc. Natural frequencies are
obtained by the modi"ed Householder method. Pearson's transfer matrix method [11] has
also been used, in which the overall transfer matrix of the spring has been divided into 32
equal segments in accordance with reference [11]. The dynamic sti!ness method, presented
in this paper, has been programmed by using MATLAB [20]. It ran in interpretive mode on
a PC with 300 MHz clock speed taking about 2 s for each 100 frequency points. The transfer
matrix method took about 2)5 times longer. For the current dynamic sti!ness method, the
natural frequencies are found by the Wittrick}Williams method [16] as discussed in section
2.5. This allows a further considerable increase in the speed of computation compared to the
transfer matrix method.

The natural frequencies for various boundary conditions are given in Tables 1}4. There is
generally good agreement among the results of the three numerical analysis methods. The
dynamic sti!ness method presented in this paper gives identical results to the transfer
matrix method of reference [11]. Small discrepancies are found with the "nite element
results, with a mean of 0)2% and a maximum of 0)9%. Also listed in Tables 1}3 are results
predicted for purely extensional/torsional modes, using the method of Banerjee and
Williams [8].

Figure 3 shows the modeshapes for the "rst eight modes of the clamped}clamped spring.
Modes 1 and 5 are predominantly extensional and modes 4 and 8 are predominantly
TABLE 1

Natural frequencies in Hz of a spring with clamped}clamped boundary conditions; wire of
radius r"6 mm, R"65 mm, a"7)443, n"6, o"7800 kg/m3, E"2)09]1011 N/m2,

l"0)28; all modes below 100 Hz are shown

Finite element Transfer matrix Dynamic Pure extension/
method method sti!ness method torsion Principal motion

1 41)105 40)99 40)994 42)725 Extensional
2 45)212 45)13 45)135 * Lateral
3 47)049 46)95 46)951 * Lateral
4 47)785 47)72 47)726 48)348 Torsional
5 81)325 81)09 81)091 85)449 Extensional
6 89)787 88)97 88)976 * Lateral
7 91)774 91)59 91)586 * Lateral
8 93)352 93)18 93)173 96)676 Torsional



TABLE 2

Natural frequencies in Hz of a spring with free}free boundary conditions; wire of radius
r"6 mm, R"65 mm, a"7)443, n"6, o"7800 kg/m3, E"2)09]1011 N/m2, l"0)28; all

modes below 100 Hz are shown

Finite element Transfer matrix Dynamic Pure extension/
method method sti!ness method torsion Principal motion

1 42)087 41)96 41)962 42)725 Extensional
2 43)386 43)32 43)309 * Lateral
3 44)184 44)11 44)106 * Lateral
4 49)445 49)38 49)384 48)348 Torsional
5 81)415 81)18 81)178 85)449 Extensional
6 86)936 86)72 86)721 * Lateral
7 88)499 88)30 88)303 * Lateral
8 95)072 94)93 94)927 96)676 Torsional

TABLE 3

Natural frequencies in Hz of a spring with clamped}free boundary conditions, wire of radius
r"6 mm, R"65 mm, a"7)443, n"6, o"7800 kg/m3, E"2)09]1011 N/m2, l"0)28; all

modes below 100 Hz are shown

Finite element Transfer matrix Dynamic Pure extension/
method method sti!ness method torsion Principal motion

1 9)4777 9)472 9)4719 * Lateral
2 9)5054 9)500 9)4998 * Lateral
3 21)429 21)36 21)359 21)362 Extensional
4 24)194 24)17 24)170 24)169 Torsional
5 42)182 42)10 42)101 * Lateral
6 42)942 42)86 42)857 * Lateral
7 63)310 63)11 63)109 64)087 Extensional
8 71)281 71)20 71)205 72)507 Torsional
9 88)435 88)22 88)227 * Lateral

10 90)095 89)89 89)893 * Lateral

TABLE 4

Natural frequencies in Hz of a spring with simply supported boundary conditions;
wire of radius r"6 mm, R"65 mm, a"7)443, n"6, o"7800 kg/m3,

E"2)09]1011 N/m2, l"0)28; all modes below 100 Hz are shown

Finite element Transfer matrix Dynamic
method method sti!ness method

1 28)571 28)51 28)516
2 29)209 29)17 29)171
3 31)225 31)16 31)162
4 33)811 33)78 33)784
5 70)300 70)13 70)125
6 74)837 74)72 74)721
7 78)253 78)10 78)099
8 79)774 79)63 79)630
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Figure 3. Modeshapes for clamped}clamped boundary conditions, side view and plan view. Solid line: displaced
shape, dotted line: undisplaced shape.
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torsional. However, the presence of lateral motion can also be observed. The other modes
are predominantly lateral in character. Similar results are observed for free}free boundary
conditions, but for the clamped}free case, the lateral and axial modes are well separated.

It may be noted from Tables 1 and 2 that both free}free and clamped}clamped boundary
conditions result in a cluster of four modes between 40 and 50 Hz and a further four modes
between 80 and 95 Hz. Also listed in these tables are results for purely extensional/torsional
modes derived using the method of Banerjee and Williams [8]. In the latter case, the
free}free and clamped}clamped results are equal (see also reference [9]). In contrast, in the
fully coupled results, none of the free}free natural frequencies is equal to any of the
clamped}clamped natural frequencies. This shows that coupling between extensional/
torsional motion and lateral motion leads to the equality of natural frequencies identi"ed by
Williams et al. [9] becoming only approximate. This is a consequence of the particular
geometry of the spring under study.

Although not equal, the natural frequencies for the free}free and clamped}clamped
boundary conditions are found to occur close together (see Tables 1 and 2). This means that,
when using the Wittrick}Williams method, for example with an initial frequency resolution
of 1 Hz, two natural frequencies would be missed in each case (81 and 88 Hz). This is not
surprising since, in the absence of coupling with lateral motion, the extensional/torsional
natural frequencies of the free}free and clamped}clamped cases are identical. However, it is
possible to overcome this problem by "rst using the other boundary conditions considered
here to identify the clamped}clamped natural frequencies, as described in section 2.5. In
particular, the simply supported modes all lie in di!erent frequency bands to the
clamped}clamped modes.

3.2. TRANSFER STIFFNESS

At a given frequency of excitation the ratio between force and displacement can be
expressed as a complex sti!ness. Particularly useful is the transfer sti!ness, i.e., the blocked



Figure 4. Transfer sti!ness of automotive suspension spring in the axial direction predicted by the dynamic
sti!ness method.

Figure 5. Transfer sti!ness of automotive suspension spring in the transverse (y) direction predicted by the
dynamic sti!ness method.
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force at one end due to a displacement input at the other. This can be obtained directly from
equation (26) by introducing a displacement vector at one end with only one component
non-zero and calculating the force in this direction at the other end. Similarly, by
calculating the reaction force at the displaced end, the point sti!ness can be obtained.

Figure 4 shows the axial transfer sti!ness for the spring under study. A constant damping
loss factor of 10~3 has been included in these predictions. Results for two directions of
transverse sti!ness are shown in Figures 5 and 6; the y direction corresponds to a direction



Figure 6. Transfer sti!ness of automotive suspension spring in the transverse (z) direction predicted by the
dynamic sti!ness method.
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that is normal to the ends of the wire, whereas the z direction is tangential to the helix (see
equation (2)). These two sti!nesses di!er considerably at high frequencies. In each direction,
the transfer sti!ness has a constant quasi-static value at low frequencies, 16)1 kN/m in the
axial direction and 7)2 kN/m in the transverse direction. The axial sti!ness can be compared
with the approximate formula given by Wittrick [3] for small helix angle, K"GI

w
/¸R2;

this gives a value of 15)9 kN/m which agrees closely with the low-frequency limit of the
curve in Figure 4.

From about 20 Hz upwards the sti!ness increases, with peaks corresponding to various
resonances of the clamped}clamped spring. The "rst two peaks in both the axial sti!ness
and the transverse sti!ness in the z direction are at 41)0 and 46)9 Hz, whereas the "rst peak
in the sti!ness in the y direction is at 45)1 Hz. A third peak at 47)7 Hz is also present in the
axial sti!ness. These are the resonances of the clamped}clamped spring (see Table 1).
Compared to the static sti!ness, the transfer sti!nesses generally increase at higher
frequencies, with a series of peaks and dips caused by resonance behaviour. At the
clamped}clamped resonances the sti!ness can become very large, limited only by the
damping. Unlike a rod, the peaks in the transfer sti!ness occur in pairs, with dips between
them. This is due to the existence of multiple coupled wave types in the spring.

Due to the coupling between di!erent co-ordinate directions in the coil spring, an axial
displacement also produces a transverse force. Other cross-terms in the sti!ness matrix are
also non-zero. At high frequencies, it is found that these cross-terms can be as large as the
direct sti!ness terms.

3.3. WAVE PROPAGATION

The dispersion curve, wavenumber versus frequency, gives useful information about the
wave propagation. For a given frequency, u, the harmonic equations of motion were solved
to "nd the complex-valued wavenumber, k from equation (16).



Figure 7. Dispersion curves for spring with helix angle 7)443. (a) imaginary (propagating) part, (b) real (decaying)
part. **, wave 1; } }, Wave 2; )))))), wave 3; } ) }, wave 4; in grey: **, wave 5; } }, wave 6.
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Figure 7 shows the dispersion curves of each motion of the spring. As above, a constant
damping loss factor of 10~3 has been included in these predictions. Three branch points are
labelled A}C. For the spring illustrated, point A occurs at 144 Hz, point B at 166 Hz and
point C at 210 Hz. These points separate the frequency range into four regimes. In the "rst
regime, the low-frequency area below point A, travelling waves 1 and 2 start from zero
wavenumber at zero frequency. These waves are torsional and extensional waves of the
spring respectively. They have similar wavenumbers, as observed by previous authors
[4}7], which can induce coupling in modes of a "nite spring. Waves 3 and 6 correspond to
transverse motion of the wire and start with a wavelength, as measured along the wire, of
one revolution of the spring, i.e., a wavenumber of 2nn/¸, with n the number of turns. This
corresponds to the transverse motion of the whole spring. The near-"eld waves, 4 and 5,
have a large real part, corresponding to decay with distance as well as starting with
a wavelength equal to one revolution of the spring. Waves 4 and 5 have the same dispersion
characteristics in this region; they are actually complex conjugates of one another.

The dispersion curves can also be used to identify the natural frequencies of various modes
approximately. For example, for free}free or clamped}clamped boundary conditions, the "rst
resonances occur when the wavenumber of wave 1 or 2 is approximately equal to n/¸ or when
the wavenumber of wave 3 or 6 di!ers by approximately 3n/2¸ from 2nn/¸. The four resulting
resonances all occur between 40 and 50 Hz for this particular spring, which leads to the cluster
of modes in this frequency region and increases the coupling between extensional/torsional
and lateral motion in these modes.

At point A, waves 4 and 5 diverge and change from near-"eld waves to travelling waves,
as indicated by the drop in their real parts. Between points A and B there are therefore six
propagating waves. As the wavelength of wave 2 approaches two revolutions of the spring,
at point B, its wave type changes from a travelling wave to a near-"eld wave. Wave 3 also
becomes a near-"eld wave at this point and these two waves form a complex conjugate pair.
At point C, the travelling wave 1 also changes to a near-"eld wave, and wave 4 returns to
a near-"eld wave, these waves again forming a complex conjugate pair. In this
high-frequency regime, therefore, there are only two travelling waves, 5 and 6.

The behaviour can also be related to the resonances seen in the sti!ness in Figure 4.
Between points A and C, 144 and 210 Hz, there is a concentration of resonances, whereas
above 210 Hz, where only two propagating wave types remain, the resonances appear more
evenly spread.



Figure 8. Displacement during free wave motion at 50 Hz. Solid line: displaced shape, dotted line: undisplaced
shape.

Figure 9. Displacement during free wave motion at 180 Hz. Solid line: displaced shape, dotted line: undisplaced
shape.
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In order to illustrate the various wave types associated with the dispersion curves,
Figures 8}10 show the displacement of the spring at one instant during the various free
wave motions. Each "gure shows, for each wave, a side view and a plan view of a wave
propagating upwards. Six turns are shown, although the free waves apply to an in"nite
spring. Figure 8 shows results at 50 Hz, representing the low-frequency regime. Waves 1 and
2 can be seen to be torsional and axial waves of the whole spring, with a wavelength of
about 8 turns. Waves 3 and 6 are composite wave motions involving lateral motion of the



Figure 10. Displacement during free wave motion at 300 Hz. Solid line: displaced shape, dotted line:
undisplaced shape.
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coils and rotation of the coils about a horizontal axis. Waves 4 and 5 are near-"eld waves
which decay rapidly.

At 180 Hz, Figure 9, the spring is between points B and C. Waves 4 and 5 have &cut-on'
and are predominantly rotation of the coils about a horizontal axis. Waves 2 and 3 have
stopped propagating and are near-"eld waves. Waves 1 and 6 have a similar nature to the
previous "gure.

Figure 10 shows the results for 300 Hz, the high-frequency regime. Here, only waves 5
and 6 are propagating waves. Both waves can be excited by both axial and transverse
motion.

For the springs studied the e!ect of shear deformation and rotational inertia is found to
be quite small. For propagating waves up to 4 kHz, a di!erence of at most 1% in the
propagating wavenumber and 4% in the decaying (real part) was observed. However, for
springs made from a thicker wire the Timoshenko beam formulation is necessary.

3.4. THE EFFECT OF HELICAL ANGLE ON WAVES

As mentioned in the previous section, wave characteristics change at certain transition
frequencies. Three non-material parameters, helix angle, helix radius and wire radius, a!ect
these points. The helix angle can have a major e!ect, whilst the others have less in#uence
[11]. The variations of the dispersion curves of each wave for the spring with helix angle
from 0 to 153 are shown in Figure 11. Figure 12 is the plot of the frequency variation of the
transition frequencies with helix angle. The number of propagating waves in each region are
also marked. For lower values of helix angle an intermediate frequency range exists
(between points A and B) where six propagating wave types can occur, whereas for helix
angles above about 8)53 point A occurs at a higher frequency than point B. As the helix
angle increases further, point A approaches point C and above 153 the distinct transition
frequencies at points A and C cease to exist.



Figure 11. Variation of dispersion curves for each wave with helix angle. ** a"03; } }, a"33; )))))), a"63;
} ) }, a"93; in grey;**, a"123; } }, a"153. (a) wave 1, (b) wave 2, (c) wave 3, (d) wave 4, (e) wave 5, (f ) wave 6.
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Figure 13 shows an example of the dispersion relation for a helix angle of 203. Waves
2 and 3 cut o! at point B, leaving two propagating waves at high frequencies, one of which is
now wave 1.

3.5. THE EFFECT OF AXIAL PRELOAD

To illustrate the e!ect of axial preload, the spring has been loaded with 2)5 kN, equivalent
to a 49% reduction in its length. The modi"ed transfer sti!ness is shown in Figure 14.



Figure 12. Variation of transition points with helix angle. **, point A (cut-on of waves 4 and 5), )))))), point
B (cut-o! of waves 2 and 3), } }, point C (cut-o! of waves 1 and 4). Numbers indicate how many propagating waves
exist in each region.

Figure 13. Dispersion curves for spring with helix angle 203. (a) imaginary (propagating) part, (b) real (decaying)
part. **, wave 1, } } wave 2, )))))), wave 3, } )}, wave 4; in grey: **, wave 5, } }, wave 6.
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This shows that the modal e!ects occur at slightly lower frequencies, the "rst three peaks
occurring at 36)6, 42)7 and 47)7 Hz. The "rst two are thus reduced by about 10% whereas
the third, the predominantly torsional mode, is una!ected by the preload.

Figure 15 shows the dispersion relation for the compressed spring. Although the spring
has a reduced helix angle due to the compression under preload, point A has moved
upwards in frequency compared to the result in Figure 7 and is at a higher frequency than
point B. Such a trend is comparable to that of increasing the helix angle in an unloaded
spring (see Figure 12). The increase in the wavenumber of wave 2 at low frequencies
corresponds to a reduction in the "rst extensional natural frequency of the spring. Wave
1 on the other hand, the torsional wave, is una!ected by the preload.



Figure 14. Transfer sti!ness of automotive suspension spring in the axial direction for a preload of 2)5 kN.

Figure 15. Imaginary (propagating) part of wavenumber for spring with preload of 2)5 kN and loaded helix
angle 3)783. **, wave 1, } }, wave 2, )))))), wave 3, } ) }, wave 4; in grey: **, wave 5, } }, wave 6.
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In Figure 16 the dependence of the three transition frequencies, A, B and C on unloaded
helix angle is shown for the situation with preload. In each case, the preload is chosen to
give a 49% reduction in length. By comparing this with Figure 12, it can be seen that point
A is most sensitive to preload, as found in Figure 14, increasing in frequency for a given
undeformed helix angle. As a result, the region with six propagating waves only occurs for
helix angles less than 63 for this degree of loading, compared to 8)53 for the unloaded case,
and points A and B cease to exist at 113 rather than 153.



Figure 16. Variation of transition points with undeformed helix angle for a spring loaded to give height
reduction of 49%. **, point A (cut-on of waves 4 and 5), ))))))), point B (cut-o! of waves 2 and 3), } }, point
C (cut-o! of waves 1 and 4). Numbers indicate how many propagating waves exist in each region.
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4. CONCLUSIONS

The equation of free wave motion in a helical spring, derived from Timoshenko
beam theory and Frenet formulae, has been used to obtain the dynamic sti!ness matrix.
The natural frequencies can be calculated from this matrix, after applying suitable
boundary conditions, by using the Wittrick}Williams method. Comparison of the
results obtained with those of "nite element and transfer matrix calculations show very
good agreement. By computing the axial and transverse transfer sti!nesses it has been
shown how the spring becomes much sti!er at high frequencies, compared to the static
sti!ness.

By investigating the dispersion relations in detail it is shown that, while at low frequencies
four propagating waves are found, above a certain transition frequency only two
remain, which are complex coupled wave types involving both axial and transverse
motions. The e!ect of the helix angle on three di!erent transition frequencies has
been investigated. At low helix angles, an intermediate frequency range exists where six
propagating wave types can occur; this leads to a clustering of modal peaks in the transfer
sti!ness. At high helix angles only one of the transition frequencies remains and
this clustering does not occur. These e!ects are also modi"ed by the inclusion of a static
preload.

The dynamic sti!ness method is an e$cient method, particularly suited to the direct
calculation of the transfer sti!nesses of a spring in multiple directions. For a typical
automotive suspension spring, signi"cant dynamic sti!ening has been shown to occur at
frequencies as low as 40 Hz, due to internal resonances of the spring. The transfer sti!nesses
calculated by using this method, along with the associated direct sti!nesses, could easily be
implemented in a fuller, for example multi-body, model of a vehicle. They contain
considerably more complex behaviour than would be obtained from a simple rod model of
the axial frequency-dependent sti!ness.
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